

- Surface tension on liquid droplet, hollow bubble and liquid jet
(1) Pressure inside a liquid droplet

$$
\mathrm{P}=\frac{4 \sigma}{d}
$$

(2) Pressure inside a hollow bubble

$$
\mathrm{P}=\frac{8 \sigma}{d}
$$

(3) Pressure inside a liquid jet

$$
\mathrm{P}=\frac{\sigma \times 2 L}{L \mathrm{X} d}
$$

Question :

The pressure outside the droplet of water of diameter 0.04 mm is $10.32 \mathrm{~N} / \mathrm{cm}^{2}$ (atmospheric pressure) calculate the pressure with in the droplet if surface tension is given as $0.0725 \mathrm{~N} / \mathrm{m}$ of water.

$$
\begin{gathered}
\mathrm{d}=0.04 \mathrm{~mm}=0.04 \times 10^{-3} \mathrm{~m} \\
\mathrm{Po}=10.32 \mathrm{~N} / \mathrm{cm}^{2}=10.32 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
\sigma=0.075 \mathrm{~N} / \mathrm{m} \\
\mathrm{P}=\frac{4 \sigma}{d} \\
\Delta \mathrm{P}=\frac{4 \sigma}{d} \\
\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{o}}=\frac{4 \sigma}{d}
\end{gathered}
$$

$$
\begin{aligned}
& P_{i}-10.32 \times 10^{4}=\frac{4 \times 0.0725}{0.04 \times 10^{-3}} \\
& P_{i}-10.32 \times 10^{4}=7250 \mathrm{~N} / \mathrm{m}^{2} \\
& P_{i}=7250+10.32 \times 10^{4} \\
& P_{i}=110450 \mathrm{~N} / \mathrm{m}^{2} \\
& P_{i}=11.045 \mathrm{~N} / \mathrm{cm}^{2}
\end{aligned}
$$

Question:

Find the surface tension in a soap bubble of 40 mm diameter when the inside pressure is $2.5 \mathrm{~N} / \mathrm{m} 2$ above atmospheric pressure.

$$
\begin{aligned}
& \mathrm{d}=40 \mathrm{~mm}=40 \times 10^{-3} \\
& \mathrm{P}=2.5 \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{P}=\frac{8 \sigma}{40 \times 10-3} \\
& \sigma=\frac{2.5 \times 40 \times 10-3}{8} \\
& \sigma=0.0125 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

THANKYOU

